E nantiospecific Syntheses of (+)-Crotepoxide, (+)-Boesenoxide, (+)- β-Senepoxide, (+)-Pipoxide Acetate, (-)-iso-Crotepoxide, $(-)$-Senepoxide, and (-)-Tingtanoxide from (-)-Quinic Acid ${ }^{1}$

Tony K. M. Shing* and Eric K. W. Tam
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong

Received October 2, 1997

A convenient strategy that is ideally suited for the construction of all the naturally occurring cyclohexane diepoxides and cyclohexene epoxides is described. The key intermediate 12, a 1,3cycl ohexadiene, has been prepared from (-)-quinic acid in 11 steps with 18% overall yield. Singlet oxygen photooxygenation of the 1,3-cyclohexadiene followed by rearrangement of the resultant endoperoxides with either cobalt-meso-tetraphenylporphyrin or trimethyl phosphite afforded enantiopure (+)-crotepoxide, (+)-boesenoxide, and (- -iso-crotepoxide or (- -senepoxide, $(+)$ - β senepoxide, (+)-pipoxide acetate, and (-)-tingtanoxide, respectively.

1. Introduction

Naturally occurring cyclohexane epoxides, ${ }^{2,3}$ which belong to a small family of heavily oxygenated cyclohexane derivatives, have attracted considerable attention from the natural product and synthetic chemists due to their unusual structures, biogenesis, and biological activity. (+)-Crotepoxide (1) ${ }^{4}$ and the recently discovered (+)boesenoxide (2) ${ }^{5}$ are members which possess a bisepoxide functionality. (+)-Crotepoxide (1) was first discovered by Kupchan et al. from the fruits of Croton macrostachys ${ }^{4}$ and then by Takahashi from Piper futokadzura ${ }^{6}$ and has been shown to display significant tumor-inhibitory activity against Lewis lung carcinoma in mice (LL) and Walker intramuscular carcinosarcoma in rats (WM). ${ }^{7}$

At roughly the same time, cyclohexene epoxides (+)pipoxide (4) and (-)-senepoxide (7) were isolated from Piper hookeri ${ }^{8}$ and Uvaria catocarpa, ${ }^{9}$ respectively, and also exhibited interesting biological properties including tumor-inhibitory, antileukemic, and antibiotic activity. The constitution and the absolute configurations of $\mathbf{1},{ }^{10}$ 4, ${ }^{11}$ and 7^{12} were conclusively established by X-ray crystallography. Recently, two additional oxiranes, (+)-β-senepoxide (3) and (-)-tingtanoxide (8), were discov-

[^0]
$1 \mathrm{R}=\mathrm{Ac}$ $2 \mathrm{R}=\mathrm{Bz}$

($1 R, 6 S$)-cyclophellitol

$3 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$4 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Bz}$
$5 \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{Bz}$

Figure 1. Configurational relationship between cyclohexane/ cyclohexene epoxides and monosaccharides.
ered. ${ }^{13}$ The absolute configurations of crotepoxide (1), (+)-boesenoxide (2), (+)- β-senepoxide (3), (+)-pipoxide (4), and (+)-pipoxide acetate (5) are similar to that of (1R,6S)cyclophellitol whereas the absolute configurations of (-)senepoxide (7), (-)-tingtanoxide (8), and nonnatural isocrotepoxide (6) are related to that of cyclophellitol. (1R,6S)-Cyclophellitol ${ }^{14}$ and cyclophellitol ${ }^{15}$ have been demonstrated to be potent β-D- and $\alpha-\mathrm{D}-\mathrm{gl}$ ucosidase inhibitors, respectively, presumably attributable to the structural resemblance to β-D- and $\alpha-\mathrm{D}-\mathrm{glucose}$ (Figure 1).

M ost of the earlier syntheses of cyclohexane diepoxides afforded racemic material. Approaches toward (\pm)crotepoxide (1) were based on transformations from a quinone, ${ }^{16}$ a 1,4 -cyclohexadiene ${ }^{17}$ or a styrene derivative. ${ }^{18}$ The first approach was also used to obtain (\pm)senepoxide (7), ${ }^{19}$ and the second approach afforded iso-

[^1]crotepoxide (6), ${ }^{17}(\pm)$-senepoxide (7), ${ }^{20}(\pm)$ - β-senepoxide (3), ${ }^{20}$ and (\pm)-pipoxide (4). ${ }^{11}$ A Diels-Alder route was employed by Schlessinger to synthesize (\pm)-senepoxide (7) and to provide formal syntheses of (\pm)-crotepoxide (1) and (\pm)-pipoxide (4). ${ }^{21}$ Recently, Ogawa et al. published the syntheses of enantiopure crotepoxide (1), ${ }^{22}(+)-\beta$ senepoxide (3), ${ }^{23}$ and (+)-pipoxide (4) ${ }^{23}$ from (1S)-endo-7-oxabicydo[2.2.1]hept-5-ene-2-carboxylic acid, ${ }^{24}$ a chemically resolved Diels-Alder adduct of furan and acrylic acid.

Our own quest for a general, flexible, and efficient entry to cyclohexane epoxides from (-)-quinic acid (24) has already produced cyclophellitol and its diastereomers. ${ }^{25}$ In continuation with our investigation into the preparation of potential glycosidase inhibitors, ${ }^{1,25}$ we now report facile syntheses of (+)-crotepoxide (1), (+)-boesenoxide (2), (+)- β-senepoxide (3), (+)-pipoxide acetate (5), (-)-iso-crotepoxide (6), (- -senepoxide (7), and (-)-tingtanoxide (8) and hence further demonstrate the versatility of quinic acid in the fabrication of heavily oxygenated cyclohexanoid natural products. A preliminary account on the construction of $\mathbf{1}$ and $\mathbf{6}$ has appeared. ${ }^{26}$

2. Results and Discussion

2.1. Antithetic Analysis and Strategy. All the target molecules share two common stereogenic centers at C-3,4. Compounds 1, 2, and $\mathbf{6}$ are bisepoxides whereas the others are monoepoxides. Crotepoxide (1), boesenoxide (2), β-senepoxide (3), and pipoxide acetate (5) as a group are distinct from the group comprising iso-crotepoxide (6), senepoxide (7), and tingtanoxide (8) by the epoxide stereochemistry, i.e., the former group has β-epoxide(s) while the latter has α-epoxide(s). Retrosynthetically, diene 9 with suitable protecting groups was believed to be the key intermediate for the construction of cyclohexane epoxides if we can epoxidize the alkene moiety regio- and stereoselectively.

According to literature reports, direct transformation of diene 9 into the target molecules by peracid oxidation posed numerous problems. Ogawa ${ }^{23}$ subjected diene 10 to m-CPBA and obtained β-senepoxide (3) together with monoepoxide isomers 13 and 14 in poor yields (eq 1).

[^2]However, the oxirane moiety in senepoxide (7) could not be constructed directly via this method. Attempts to prepare crotepoxide (1) by direct introduction of the cis-1,2:3,4-bisepoxy function to the diene using peracid were also unsuccessful. White ${ }^{17}$ found that benzyl diene 15 reacted with tert-butyl hydroperoxide in the presence of $\mathrm{VO}(\mathrm{acac})_{2}$ as catalyst to give α-bisepoxide 17 stereospecifically, albeit in 15\% yield. Using m-CPBA even under the forcing conditions devised by Kishi, a mixture of trans-bisepoxide 18 and β-cis-bisepoxide 19 was obtained from diacetyl diene 16 in a total yield of 55\% and in a ratio of $8: 1$, respectively. 27 Hence, the fabrication of the bisepoxide functionality from 9 using the classical approach does not appear to be efficient and convenient.

$15 \mathrm{R}=\mathrm{H}$

17

18

19

Singlet oxygen photooxygenation ${ }^{28}$ seems to be the solution to construct the target molecules (Figure 2). Fundamentally, 1,4-cycloaddition of singlet oxygen to a cyclic diene results in the formation of a bicyclic endoperoxide (20 $\boldsymbol{\mathbf { 2 1 }}$). ${ }^{29}$ This cycloadduct provides an excellent opportunity to form the cis-bisepoxide functionality by metal complex catalyzed rearrangement (21 $\boldsymbol{\rightarrow} \mathbf{2 2}$). ${ }^{30}$

Figure 2. Synthetic strategy.
On the other hand, the reduction of endoperoxide by phosphite provides a facile entry to unsaturated monoepoxides ($\mathbf{2 1} \boldsymbol{\rightarrow} \mathbf{2 3}$). ${ }^{31}$ The earlier work by White ${ }^{17}$ and by Ganem ${ }^{20}$ further convinced us that photooxygenation of diene 9 should be an attractive route to cyclohexane diepoxides. The synthetic problem is now reduced to the choice of suitable hydroxy blocking groups (R_{1} and R_{2}) for diene 9. Analysis of the structure of all the target molecules reveals that R_{1} should be an acetyl group in order to shorten the synthetic route. Since diacetate 10 could not be oxidized under the singlet oxygen photooxygenation conditions, ${ }^{17} \mathrm{R}_{2}$ was not recommended to be an acyl group. Finally, we decided to employ diene $\mathbf{1 2}$ with R_{2} being a silyl group as our key intermediate.

[^3]2.2. Synthesis of Key Intermediate 12. Our previous work has shown that (-)-quinic acid (24) could be transformed into the alcohol 25 in seven steps with an overall yield of $47 \% .{ }^{32}$ Standard benzoylation of 25 in pyridine (pyr) furnished silyl benzoate $\mathbf{2 6}$ smoothly in quantitative yield (eq 2). In another approach, through a shorter sequence of functional group manipulation, silyl benzoate $\mathbf{2 6}$ could be elaborated from diol 27 which in turn could be derived, in four steps, also from (-)-quinic acid (24) according to our previous endeavor. ${ }^{33}$

Table 1 summarizes the results of the regioselective benzoylation of the primary hydroxy group in diol 27. Dibenzoate 29 was identified and isol ated as the sole side product. The best result (Table 1, entry 4) of obtaining monobenzoate $\mathbf{2 8}$ was by treating diol $\mathbf{2 7}$ with 1 equiv of benzoyl chloride and 3 equiv of collidine in dry dichloromethane at $-78{ }^{\circ} \mathrm{C}$ for 3 h and then at room temperature for another 1 h .

Table 1. Regioselective Benzoylation of 27

Silylation of the remaining al cohol afforded the desired silyl benzoate 26 in 97\% yield. According to this improved procedure, we could shorten the synthetic route by two steps together with an increase of 4% overall yield from quinic acid.

At this stage, we had to transform the silyl benzoate 26 into alkene 12. The double bond in 26 was subjected to our recently developed ruthenium-catalyzed flash dihydroxylation protocol at the less hindered convex face (β-face) of the bicyclic skeleton to give, exclusively, the desired β-diol 30 in 75\% yield (Scheme 1). ${ }^{36}$ Alternatively, alkene $\mathbf{2 6}$ could be dihydroxylated with a catalytic

[^4]Scheme 1

amount of osmium tetraoxide, ${ }^{37}$ leading to $\mathbf{3 0}$ as the sole product in the same yield. Selective acetylation of the secondary hydroxy group in 30 gave monoacetate 31. Through this two-step conversion ($\mathbf{2 6} \rightarrow \mathbf{3 0} \rightarrow \mathbf{3 1}$), the OAc group at C-2 with the correct stereochemistry was established.
With tertiary al cohol 31 at hand, we set out to prepare alkene $\mathbf{3 2}$ via a suitable dehydration protocol. Several literature methods were studied such as phosphorus oxychloride $\left(\mathrm{POCl}_{3}\right)^{38}$ and Martin sulfurane dehydrating agent $\left\{\left[\mathrm{PhC}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O}\right]_{2} \mathrm{~S}(\mathrm{Ph})_{2}\right\} .{ }^{39}$ H owever, these one-pot reactions were found ineffective. The former gave decomposition products while the latter yielded only a trace amount of alkene 32. Gratifyingly, we discovered that the traditional method of reacting al cohol 31 with thionyl chloride in pyridine ${ }^{40}$ at room temperature furnished alkene 32 in good yields. This procedure initially proved inefficient on a large scale (>1 g) (usually the yield decreased from 81% to 50%). We had overcome this problem by slow addition of a solution of alcohol 31 to a mixture of 1.5 equiv of thionyl chloride and 10 equiv of pyridine in dry dichloromethane at $0{ }^{\circ} \mathrm{C}$, followed by stirring the reaction mixture for 12 h at room temperature. The best result obtained by this protocol on a 10 g scale was 86% yield.

Selective hydrolysis of the cyclohexylidene ketal in 32 with 50% aqueous trifluoroacetic acid in dichloromethane afforded vicinal diol 33. The workup was best conducted after 6 h , and the reaction showed only 95% conversion. Prol onging the reaction time resulted in the isolation of triol 34 as the side product which became the sole product after hydrolysis for 12 h at room temperature. CoreyWinter ${ }^{41}$ deoxygenation of the vicinal diol moiety in 33 provided the key intermediate diene $\mathbf{1 2}$ that now possessed the functionality required for the bisoxirane formation via a singlet oxygen photooxidation reaction. ${ }^{29,42}$
2.3. Syntheses of (+)-Crotepoxide (1), (+)-Boesenoxide (2), and (-)-iso-Crotepoxide (6). The photoen-

[^5]Scheme 2

doperoxidation reaction ${ }^{42}$ was set up as follows: diene 12 was mixed with a catalytic amount (substrate:catalyst, ca. 1000:1) of the sensitizer tetraphenylporphyrin (TPP) in carbon tetrachloride (singlet oxygen has a long lifetime in $\left.\mathrm{CCl}_{4}\right)^{43}$ at $0{ }^{\circ} \mathrm{C}$. Oxygen gas was bubbled into the solution. After 3 min , the reaction mixture was illuminated with a projection lamp (450 W) for 5 h . A mixture of endoperoxides 35 and 36 in a respective ratio of 54:1 was obtained, readily separable by flash chromatography (eq 3). On the basis of the spectral data, we

were unable to assign the stereochemistry of the compounds at this stage. The exact stereochemistry was determined by converting the endoperoxides into the target molecules. As expected, the photooxidation of $\mathbf{1 2}$ proceeded selectively at the less hindered β-face, giving the β-endoperoxide 35 as the preponderant product. The high diastereoselectivity ($35: 36=54: 1$) indicated that it was highly efficient to use the tert-butyldimethyl silyl ether as the stereodirecting group in the endoperoxidation. Subjection of the endoperoxide 35 to the cobalt-meso-tetraphenylporphyrin (CoTPP) catalyzed rearrangement reaction ${ }^{44}$ at $0{ }^{\circ} \mathrm{C}$ gave smoothly the bisepoxide 37 in essentially quantitative yield.
With the bisepoxide in hand, we should obtain the target molecules simply by desilylation and esterification (Scheme 2). Exposure of bisepoxide 37 to pyridinium hydrogen fluoride ${ }^{45}$ resulted in the cleavage of the silyl ether, providing alcohol 38 in 85% yield. Finally, acetylation of the free al cohol in 38 yielded crotepoxide (1), mp $146-148{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. $\left.{ }^{4} \mathrm{mp} 150-151^{\circ} \mathrm{C}\right) ;[\alpha]^{26} \mathrm{D}$ $=+71.9\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit} .{ }^{4}[\alpha]^{25} \mathrm{D}=+74(\mathrm{c}=1.7\right.$, $\left.\mathrm{CHCl}_{3}\right)$ \}. On the other hand, benzoylation of 38 furnished, for the first time, optically active boesenoxide (2), $\mathrm{mp} 169-170{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. ${ }^{5} \mathrm{mp} \mathrm{171-172}{ }^{\circ} \mathrm{C}$); $[\alpha]^{20}{ }_{D}=+34.9\left(c=0.1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{5}[\alpha]^{20} \mathrm{D}=+35.0(\mathrm{c}=$ $\left.\left.0.1, \mathrm{CHCl}_{3}\right)\right\}$. The first enantiospecific synthesis of optically active iso-crotepoxide (6) could be realized along

[^6]Scheme 3

a similar line as shown in Scheme 3. The α-endoperoxide 36 underwent CoTPP catalyzed rearrangement without incidence to the α-bisepoxide 39 in quantitative yield. Desilylation of $\mathbf{3 9}$ gave alcohol $\mathbf{4 0}$ that was acetylated to yield iso-crotepoxide (6) as an oil: $[\alpha]^{27}{ }_{\mathrm{D}}=-35.8$ (c $=$ $0.7, \mathrm{CHCl}_{3}$). The ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectral data were in close agreement with the reported values ${ }^{17}$ of racemic 6.
As expected, the high stereoselectivity of photooxygenation of diene $\mathbf{1 2}$ does not provide an efficient route to cyclohexane epoxides having an α-epoxide moiety. To remedy this situation, we needed to find an alternative avenue, and diene 41 should be a suitable intermediate for the photooxidation. Initial attempts to desilylate the diene $\mathbf{1 2}$ with TBAF in THF or HF - pyridine in acetonitrile resulted in 4% of monoal cohol 41 and 60% of the undesired triol 42 with the former protocol (eq 4). The

latter procedure led to the recovery of most of the starting material together with only a trace amount of the desired alcohol 41. The best result of desilylation of 12 was achieved with 48% aqueous HF in acetonitrile, providing the alcohol 41 exclusively in 80% yield. Acetylation of al cohol 41 led to the benzoyl diacetate diene 10. Surprisingly, photooxygenation of $\mathbf{1 0}$ could not be effected. In another report, ${ }^{17}$ it was found that benzyl ether diacetate 16 was also unreactive toward singlet oxygen. Presumably, the presence of two electron-withdrawing groups (acetate) diminished the nucleophilicity of the diene toward photoendoperoxidation. Photooxygenation of di-ene-alcohol 41 was successful and gave a mixture of β-endoperoxide 43 and α-endoperoxide 44 in a ratio of 3:2 (eq 5). It is noteworthy that in the absence of the

bulky silyl group at C-2 production of the α-endoperoxide becomes significant. The mixture of endoperoxides could be separated by flash chromatography. On treatment with a catalytic amount of CoTPP, β-endoperoxide 43 rearranged smoothly to the corresponding bisepoxide 38, which was identical to the product of desilylation of bisepoxide 37. This bisepoxide 38 was al so converted into

Scheme 4

Scheme 5

crotepoxide (1) and bosenoxide (2). In a similar manner, treatment of α-endoperoxide $\mathbf{4 4}$ with CoTPP followed by acetylation of the resulting α-bisoxirane furnished isocrotepoxide (6) (Scheme 3).
2.4. Syntheses of the (+)- β-Senepoxide (3), (+)Pipoxide Acetate (5), (-)-Tingtanoxide (8), and (-)Senepoxide (7). With the β-endoperoxide 43 in hand, we conducted reductive rearrangement ${ }^{29 b}$ using trimethyl phosphite in benzene to give cyclohexene epoxide 45 exclusively in 85% yield (Scheme 4). It is noteworthy that this reaction is highly regio- and stereoselective, and none of the regio- or stereoisomer was isolated.

Having established all the requisite stereocenters, we then acetylated the alcohol in cyclohexene epoxide 45 to give (+)- β-senepoxide (3); mp $69-71^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. $\left.{ }^{13} \mathrm{mp} 72-73^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{20}=+62.9\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{13}$ $\left.[\alpha]^{25}=+62.0\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)\right\}$. On the other hand, benzoylation of the alcohol in $\mathbf{4 5}$ gave (+)-pipoxide acetate (5): $\mathrm{mp} 172-173{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. ${ }^{13} \mathrm{mp} 171-172$ $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+8.9\left(\mathrm{C}=1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{13}[\alpha]^{28} \mathrm{D}=+9.0$ ($\mathrm{c}=4.4, \mathrm{CHCl}_{3}$) \}.

The α-endoperoxide 44 was treated with trimethyl phosphite in a similar manner, furnishing cyclohexene epoxide 46 in 85% yield. Standard acetylation of 46 afforded target molecule (-)-senepoxide (7): mp 85-86 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. $\left.{ }^{9} \mathrm{mp} 85^{\circ} \mathrm{C}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-194.6(\mathrm{c}=$ $\left.0.2, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.{ }^{9}[\alpha]^{25}{ }_{\mathrm{D}}=-197.0\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)\right\}$. Benzoylation of 46 provided (-)-tingtanoxide (8): mp 69$71{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) (lit. $\left.{ }^{13} \mathrm{mp} 72-73^{\circ} \mathrm{C}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-303$ $\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.{ }^{13}[\alpha]^{28}{ }_{\mathrm{D}}=-306\left(\mathrm{c}=6.3, \mathrm{CHCl}_{3}\right)\right\}$ respectively (Scheme 5).

3. Conclusions

In conclusion, (+)-crotepoxide (1) and (+)-boesenoxide (2) were synthesized from (-)-quinic acid (24) via pho-
toendoperoxidation of diene $\mathbf{1 2}$ in 15 steps with 9\% overall yields. On the other hand, (-)-iso-crotepoxide (6) was prepared from (-)-quinic acid (24) via photooxygenation of diene 41 in 15 steps with 3% overall yield. (+)Pipoxide acetate (5) and (+)- β-senepoxide (3) were constructed from (-)-quinic acid (24) via rearrangement of β-endoperoxide 43 in 15 steps with 6\% overall yield in each case. On the other hand, (- -senepoxide (7) and (-)-tingtanoxide (8) were fabricated from (-)-quinic acid (24) via rearrangement of α-endoperoxide 44 in 15 steps with 3% overall yield. Enantiospecific syntheses of (+)boesenoxide (2), (-)-iso-crotepoxide (6), (-)-senepoxide (7), and (-)-tingtanoxide (8) are reported for the first time.

4. Experimental Section

Melting points are reported in degrees Celsius and are uncorrected. Optical rotations were measured at 589 nm . IR spectra were recorded on a FT-IR spectrometer as thin films on NaCl disks. Unless stated to the contrary, NMR spectra were measured in solutions of CDCl_{3} at $250 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or at 62.9 MHz $\left({ }^{13} \mathrm{C}\right)$. Spin-spin coupling constants (J) were measured directly from the spectra. Carbon and hydrogen elemental analyses were carried out at either the Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, China, or the MEDAC Ltd., Department of Chemistry, Brunel University, Uxbridge, U.K. All reactions were monitored by analytical TLC on aluminum precoated with silica gel $60 F_{254}$ (E . Merck), and compounds were visualized with a spray of either $5 \% \mathrm{w} / \mathrm{v}$ dodecamolybdophosphoric acid in ethanol or $5 \% \mathrm{v} / \mathrm{v}$ concentrated sulfuric acid in ethanol and subsequent heating. All columns were packed wet using E. Merck silica gel 60 (230-400 mesh) as the stationary phase and eluted using flash39 chromatographic technique. Pyridine was distilled over barium oxide and stored in the presence of potassium hydroxide pellets. THF was distilled from sodium benzophenone ketyl under a nitrogen atmosphere. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over phosphorus pentoxide and stored in the presence of $4 \AA$ molecular sieves. Other reagents were purchased from commercial suppliers and were used without purification.
(+)-Crotepoxide (1). To a solution of the alcohol 38 (320 $\mathrm{mg}, 1.0 \mathrm{mmol}$), TEA ($312 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$), and a catalytic amount of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added acetic anhydride ($104 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) at room temperature. The solution was stirred at room temperature for 12 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 2:1) provided (+)-crotepoxide (1) (362 mg, 100%) as a white solid: $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp} 150-151^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.50\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.4: 1\right) ;[\alpha]^{26} \mathrm{D}+71.9\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$ (lit. ${ }^{4}[\alpha]^{25} \mathrm{D}+74$ (c = 1.7, CHCl_{3}); IR (thin film) 1725, $1750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.03(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6,3.9$ $\mathrm{Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,3.9 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz})$, $4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.99(1 \mathrm{H}$, dd, J = 1.6, 9.0 Hz$), 5.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6,48.0,52.6,53.8,59.4,62.5,69.5,70.4,128.6,129.2$, 129.8, 133.5, 165.8, 169.7, 170.0.
(+)-Boesenoxide (2). To a solution of the alcohol 38 (160 $\mathrm{mg}, 0.5 \mathrm{mmol})$, TEA ($156 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), and a catalytic amount of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added benzoyl chloride ($70 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) at room temperature. The solution was stirred at room temperature for 12 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography (EtOAc-hexane, 1:2) provided (+)-boseneoxide (2) (362 mg, 100%) as a white sol id: mp $169-170^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 171-172^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.62($ EtOAc-hexane, $1: 1) ;[\alpha]^{20} \mathrm{D}+34.9\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$
(lit. ${ }^{5}[\alpha]^{20}{ }_{D}+35.0\left(\mathrm{C}=0.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) 1725,1745 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 2.07(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6,3.9 \mathrm{~Hz})$, $3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,3.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 4.28$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=1.6,9.5 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 7.43(4 \mathrm{H}, \mathrm{m}), 7.59$ ($2 \mathrm{H}, \mathrm{m}$), $8.04(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 21.3,48.9,53.7,54.6,60.5$, $63.1,70.1,71.9,129.3,129.8,130.5,134.2,166.2,166.5,170.7$.
(+)- β-Senepoxide (3). F ollowing the same procedure as for acetylation of 38, cyclohexene oxide 45 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) gave a quantitative yield of (+)- β-senepoxide (3) as a white solid, after fractionation by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, 2:1): $\mathrm{mp} 69-71^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp} 72-73^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.54$ (EtOAc-hexane, 1:1); $[\alpha]^{20}{ }_{D}+62.9\left(c=0.1, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{13}[\alpha]^{25}{ }_{D}$ $+62\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$; IR (thin film), $1747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $2.05(3 \mathrm{H}, \mathrm{s}), 2.14(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.9,4.1 \mathrm{~Hz}), 4.37$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=2.0,8.3 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0$, $9.9 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0,10.1 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4$ $\mathrm{Hz}), 7.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.7,20.9,54.5,58.3,62.2,71.3,124.1,128.5,129.3$, 129.8, 133.4, 165.8, 170.2 .

Pipoxide Acetate (5). Following the same procedure as for benzoylation of 38, cyclohexene oxide 45 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) gave a quantitative yield of pipoxide acetate (5) as a colorless oil, after fractionation by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane $1: 1): R_{f}=0.58\left(E t_{2} \mathrm{O}\right.$-hexane, $\left.1: 1\right) ;[\alpha]^{20}+8.9\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$ (lit. ${ }^{13}[\alpha]^{28} \mathrm{D}+9.0\left(\mathrm{c}=4.4, \mathrm{CHCl}_{3}\right)$; IR (thin film), $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.11(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.9,3.8 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{ddd}$, $\mathrm{J}=1.7,4.2,6.9 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{m}), 6.09(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.6,3.8$, $9.9 \mathrm{~Hz}), 7.46(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{m}), 8.04(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ $20.6,54.5,58.4,62.3,71.2,72.2,124.3,128.5,129.5,129.6$, 129.8, 133.3, 133.6, 165.8, 170.1.
(-)-iso-Crotepoxide (6). Following the same procedure as for the acetylation of 38, the alcohol $\mathbf{4 0}$ ($21 \mathrm{mg}, 0.07 \mathrm{mmol}$) gave a quantitative yield of (-)-iso-crotepoxide (6) as a col orless oil, after fractionation by flash chromatography ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$-hexane, 4:1): $\mathrm{R}_{\mathrm{f}}=0.45$ (EtOAc-hexane, 1:1); $[\alpha]^{27}{ }_{\mathrm{D}}-35.8$ (c = 0.7, CHCl_{3}); IR (thin film), $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.00(3 \mathrm{H}, \mathrm{s}), 2.11$ $(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 3.57$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,4.0 \mathrm{~Hz}), 4.39(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=12.3 \mathrm{~Hz}), 5.36$ $(2 \mathrm{H}, \mathrm{s}), 7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 8.02$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.4,20.7,47.9,53.1,53.2$, 56.9, 63.1, 68.7, 70.9, 76.0, 128.6, 129.3, 129.7, 133.5, 165.8, 169.4, 170.4; HRMS cal cd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{8} 363.1080\left(\mathrm{HM}^{+}\right.$), found $363.1072\left(\mathrm{HM}^{+}\right)$.
(-)-Senepoxide (7). F ollowing the same procedure as for the preparation of 1, cyclohexene oxide 46 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) gave a quantitative yield of (-)-senepoxide (7) as a white solid after fractionation by flash chromatography (Et2O-hexane 2:1): $\mathrm{mp} 85-86^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp}, 85^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.55$ (EtOAc-hexane 1:1); $[\alpha]^{20}{ }_{\mathrm{D}}-194.6\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)\left(\mathrm{lit} .{ }^{9}[\alpha]^{25}{ }_{\mathrm{D}}-197(\mathrm{c}=1.2\right.$, CHCl_{3}); IR (thin film), $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.07(3 \mathrm{H}, \mathrm{s}), 2.10$ (3H, s), $3.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz})$ $4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,5.6 \mathrm{~Hz}), 5.59$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.9,9.3 \mathrm{~Hz}), 6.39(1 \mathrm{H}$ dd, J $=3.9,10.0 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\delta 20.6,20.9,49.7$, 61.6, 64.0, 67.3, 67.6, 128.5, 128.9, 129.0, 129.6, 129.8, 133.3, 166.0, 170.0.
(-)-Tingtanoxide (8). F ollowing the same procedure as for benzoylation of 38, cyclohexene oxide 46 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) gave a quantitative yield of (-)-tingtanoxide (8) as a col orless oil, after fractionation by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:1): mp 69-71 ${ }^{\circ} \mathrm{C}\left(E t_{2} \mathrm{O}\right.$-hexane) (lit. $\left.{ }^{13} \mathrm{mp} 72-73^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{f}}=$ 0.69 (EtOAc-hexane, 1:1); $[\alpha]^{20}$ d -303 (c $=1.0, \mathrm{CHCl}_{3}$) (lit. ${ }^{13}$ $[\alpha]^{28}{ }_{D}-306\left(c=6.3, \mathrm{CHCl}_{3}\right) ;$ IR (thin film), $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.09(3 \mathrm{H}, \mathrm{s}), 3.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5$ $\mathrm{Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,5.5 \mathrm{~Hz})$, $5.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.8 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,9.2 \mathrm{~Hz}), 6.43$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.0,9.9 \mathrm{~Hz}), 7.46(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{m}), 8.04(4 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.7,50.1,61.6,64.5,67.2,67.6,124.6,128.5$, 129.1, 129.2, 129.8, 133.3, 133.5, 165.9, 170.0.
(3R ,4R)-4-O-Acetyl-5-(benzoyloxymethyl)-3-O-(tert-bu-tyldimethylsilyl)cyclohexa-1,5-diene-3,4-diol (12). Tо а
solution of the diol $\mathbf{3 3}$ ($109 \mathrm{mg}, 0.25 \mathrm{mmol}$) in toluene (25 mL) was added 1,1'-thiocarbonyldiimidazole ($66.7 \mathrm{mg}, 0.37 \mathrm{mmol}$) in three equal portions within 3 h . The mixture was heated under reflux for 24 h and filtered through a thin layer pad of silica gel. Removal of the solvent from the filtrate under reduced pressure gave a yellow oil. Without further purification, the oil was dissolved in trimethyl phosphite (25 mL) and the solution was heated under reflux for 24 h . Solvent removal under reduced pressure followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:10) provided the diene $12(68.5 \mathrm{mg}, 68 \%$) as a col orless oil: $\mathrm{R}_{\mathrm{f}}=0.43\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:6); $[\alpha]^{222}-2.5$ (c = 28.9, CHCl_{3}); IR (thin film) $1724 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07$ ($6 \mathrm{H}, \mathrm{s}$) $0.87(9 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 4.48(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.3,3.5,8.0 \mathrm{~Hz})$, $4.85(2 \mathrm{H}, \mathrm{s}), 5.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0,8.0 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{m}), 5.98$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.4,5.3,9.7 \mathrm{~Hz}$), $6.17(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.1,5.3 \mathrm{~Hz}$), $7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.3 \mathrm{~Hz}$); MS m/z (relative intensity) $402\left(\mathrm{M}^{+}, 1\right)$. Anal. Cal cd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 65.64 ; \mathrm{H}, 7.51$. Found: $\mathrm{C}, 66.04 ; \mathrm{H}$, 7.68.
(1R ,2R ,3S)-5-(Benzoyloxymethyl)-3-O-(tert-butyldi-methylsilyl)-1,2-0-cyclohexylidenee-4-cyclohexen-1,2,3triol (26). A solution of allylic alcohol 28 ($344 \mathrm{mg}, 1.0 \mathrm{mmol}$), imidazole ($136 \mathrm{mg}, 2.0 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($181 \mathrm{mg}, 1.2 \mathrm{mmol}$), and a catalytic amount of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was stirred at room temperature for 12 h . The mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 10$) provided the title compound $\mathbf{2 6}$ ($445 \mathrm{mg}, 97 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.57$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 4$); $[\alpha]^{26}{ }_{\mathrm{D}}+13.7\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) $1722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.13(6 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s})$, $1.36-1.60(10 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 2.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=16.0 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{m}), 4.76(2 \mathrm{H}$, s), $5.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.5(\times 2), 18.3,23.6$, 23.9, 25.3, 25.8, 25.9, 29.9, 33.9, 35.7, 67.1, 69.3, 72.5, 77.2, 109.1, 128.2, 129.5, 129.6, 129.9, 130.2, 131.7, 132.7, 166.1; MS m/z (relative intensity) 458 ($\mathrm{M}^{+}, 4.3$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 68.09 ; \mathrm{H}, 8.35$. Found: C, 67.85; H, 8.27.
(1R,2R,3S)-5-(Benzoyloxymethyl)-1,2-0-cyclohex-ylidene-4-cyclohexene-1,2,3-triol (28). To a solution of the diol 27 ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$) and collidine ($263 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of benzoyl chloride ($115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 5 min . The reaction mixture was allowed to warm to room temperature and stirred for 2 h . The resulting mixture was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 $\mathrm{mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL), and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 2:1) provided the benzoate $\mathbf{2 8}$ ($282 \mathrm{mg}, 82 \%$) as a white solid: $\mathrm{R}_{\mathrm{f}}=0.62\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.4: 1\right) ;[\alpha]^{26} \mathrm{D}+13.7\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) 1721, $3489 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.36-1.60$ (10 H , m), $2.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.9 \mathrm{~Hz}), 2.47$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{s}), 4.49(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.76(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=13.7 \mathrm{~Hz}), 5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.54$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ (relative intensity) $344\left(\mathrm{M}^{+}, 3\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 69.75; H, 7.02. Found: C, 69.76, H, 6.87 .
(1R,2R,3S,4S,5S)-5-(Benzoyloxymethyl)-3-O-(tert-bu-tyldimethylsilyl)-1,2-0-cyclohexylidenecyclohexane$\mathbf{1 , 2 , 3 , 4 , 5 - p e n t o l ~ (3 0) . ~ T o ~ a ~ v i g o r o u s l y ~ s t i r r e d ~ s o l u t i o n ~ o f ~ t h e ~}$ alkene 26 ($459 \mathrm{mg}, 1.0 \mathrm{mmol}$) in EtOAc- $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL}-6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ (ice-water bath) was added a solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($19 \mathrm{mg}, 0.07 \mathrm{mmol}$) and $\mathrm{NaIO}_{4}(320 \mathrm{mg}, 1.5 \mathrm{mmol})$ in distilled water (2 mL). The biphasic mixture was stirred vigorously for 3 min and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (10 mL). The aqueous phase was separated and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:2) afforded the diol 30 ($370 \mathrm{mg}, 75 \%$) as a white solid: $\mathrm{mp} 116-117^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.31$
($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:2); $[\alpha]^{26} \mathrm{D}-22.2\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right.$); IR (thin film) $1724,3473 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.15(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.94$ ($9 \mathrm{H}, \mathrm{s}$), 1.38-1.75 (10H, m), 1.83 (1H, ddd, J $=1.85,8.45,14.2$ $\mathrm{Hz}), 2.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2,14.2 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8), 2.62$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.25 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.25,9.45 \mathrm{~Hz}), 4.07$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.75,9.45 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.27-$ $4.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.75 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0$ $\mathrm{Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.3,-4.4,18.2$, 23.7, 24.1, 25.1, 25.9, 35.0, 35.5, 38.2, 68.8, 70.5, 71.2, 72.0, $73.3,76.3,109.9,128.4,129.7,130.0,133.1,166.5 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity) 493 ($\mathrm{M}^{+}, 2$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}$: C, 63.38; H, 8.18. Found: C, 63.38; H, 8.21.
(1R,2R ,3R,4S,5S)-4-O-Acetyl-5-(benzoyloxymethyl)-3-O-(tert-butyl-dimethylsilyl)-1,2-O-cyclohexylidenecyclo-hexane-1,2,3,4,5-pentol (31). To a solution of the diol $\mathbf{3 0}$ (493 $\mathrm{mg}, 1.0 \mathrm{mmol})$, pyridine ($172 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$), and a catalytic amount of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added acetic anhydride ($104 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) at room temperature. The sol ution was stirred at room temperature for 12 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 2$) provided monoacetate 31 ($519 \mathrm{mg}, 97 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.31\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, 1:1); $[\alpha]^{26} \mathrm{D}-19.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); IR (thin film) 1725 , $1750,3448 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.13(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}), 0.86$ ($9 \mathrm{H}, \mathrm{s}$), 1.38-1.75 (10H , m), $2.05(3 \mathrm{H}, \mathrm{s}), 2.21-2.32(2 \mathrm{H}, \mathrm{m})$, $2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}), 4.26-4.42(4 \mathrm{H}, \mathrm{m})$, $5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.13 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.75 \mathrm{~Hz}), 7.57(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$), $8.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity) 535 ($\mathrm{M}^{+}, 3$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 62.89$; H, 7.92. Found: C, 63.13; H, 8.23.
(1R ,2R ,3S,4R)-4-O-Acetyl-5-(benzoyloxymethyl)-3-0-(tert-butyldimethylsilyl)-1,2-0-cyclohexylidene-5-cyclo-hexene-1,2,3,4-tetraol (32). To a solution of thionyl chloride ($0.89 \mathrm{~mL}, 12.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of tertiary al cohol $31(5.35 \mathrm{~g}, 10.0$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and pyridine ($2.58 \mathrm{~mL}, 30.0$ $\mathrm{mmol})$ for 2.5 h at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred for 12 h at room temperature and poured into a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the combined organic extracts were washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:4) provided the alkene 32 (4.60 $\mathrm{g}, 89 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.66\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 2\right) ;[\alpha]^{26} \mathrm{D}$ +45.5 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); IR (thin film) $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $0.13(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.38-1.75(10 \mathrm{H}, \mathrm{m})$, 2.07 (3H, s), 3.97 (1 H , dd, J = 2.3, 8.3 Hz), $4.39(1 \mathrm{H}, \mathrm{m}), 4.62$ $(1 \mathrm{H}, \mathrm{m}), 4.76(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.81(1 \mathrm{H}, \mathrm{m}), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$, $7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.75 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=5.1 \mathrm{~Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity) $517\left(\mathrm{M}^{+}, 2\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 65.09 ; \mathrm{H}, 7.80$. Found: C, 64.70; H, 8.04 .
(1R , 2R , 3S,4R)-4-O-Acetyl-5-(benzoyloxymethyl)-3-0-(tert-butyl-dimethylsilyl)-5-cyclohexene-1,2,3,4-tetrol (33). To a solution of compound 32 ($517 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added 2 mL of 50% aqueous TFA. The mixture was stirred vigorously at room temperature for 6 h and poured into an aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}, 5 \% \mathrm{w} / \mathrm{v})$. The aqueous phase was extract with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 2:1) provided the title compound 33 ($331 \mathrm{mg}, 80 \%$) as a white solid with 95% conversion: $\mathrm{mp} 79-80{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane); $\mathrm{R}_{\mathrm{f}}=0.43$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $3: 1$); $[\alpha]^{26}{ }_{\mathrm{D}}-66.7$ ($\mathrm{c}=1.5, \mathrm{CHCl}_{3}$); IR (thin film) $3450,1724 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.16(6 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 2.01$ $(3 \mathrm{H}, \mathrm{s}), 2.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz})$, $3.87(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.2,4.7,9.2 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz})$, $4.15(1 \mathrm{H}, \mathrm{m}), 4.81(2 \mathrm{H}, \mathrm{s}), 5.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}), 6.34(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity) 437
$\left(\mathrm{M}^{+}, 1\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 60.53 ; \mathrm{H}, 7.39$. Found: C, 60.32; H, 7.30.

Silylated β-Endoperoxide 35 and Silylated α-Endoperoxide 36. Oxygen was bubbled through a solution of the diene $\mathbf{1 2}(402 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ containing a catalytic amount ($0.1 \mathrm{~mol} \%$) of 5,10,15,20-tetraphenyl$21 \mathrm{H}, 23 \mathrm{H}$-porphine ($0.6 \mathrm{mg}, 1 \times 10^{-3} \mathrm{mmol}$). After 5 min , the reaction mixture was irradiated with 450 W projection Iamp for 7 h and poured into a thin layer pad of silica gel. Removal of the solvents under reduced pressure followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:5) gave 339.8 mg of β-endoperoxide 35 and 6.3 mg of α-endoperoxide 36 as colorless oils (80\%). The ratio of $\mathbf{3 5}$ to $\mathbf{3 6}$ (ca. $54: 1$) was determined by the isolated yields. Pure compounds were obtained by flash chromatography. The less polar 35 was obtained as a col orless oil: $\mathrm{R}_{\mathrm{f}}=0.45\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 3\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.86$ $(9 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.4,2.0 \mathrm{~Hz}), 4.41(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{m}), 4.84$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 6.71(2 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz})$. The more polar 36 was obtained as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.27\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 3\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{s})$, $4.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{s}), 6.46(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3,8.2 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$.

Silylated $\boldsymbol{\beta}$-Bisepoxide 37. A solution of the β-endoperoxide 35 ($109 \mathrm{mg}, 0.25 \mathrm{mmol}$) in CHCl_{3} (10 mL) was added 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (0.7 mg , $1 \times 10^{-3} \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 3 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) provided the bisepoxide 37 ($109 \mathrm{mg}, 100 \%$) as a white solid: $\mathrm{mp} 68-71$ ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 1\right) ;[\alpha]^{22} \mathrm{D}+38.7\left(\mathrm{c}=3.4, \mathrm{CHCl}_{3}\right)$; IR (thin film) $1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s})$, $0.85(9 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{s}), 3.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=0.9,4.0 \mathrm{~Hz}), 3.40$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,4.0 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 3.90(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=1.4,9.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=12.1 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})$, $7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{SiNa} 457.1653\left(\mathrm{NaM}^{+}\right)$, found $457.1692\left(\mathrm{NaM}^{+}\right)$.
β-Bisepoxide 38. (a) From 37. To a solution of the silylated bisepoxide 37 ($44 \mathrm{mg}, 0.1 \mathrm{mmol}$) in THF (10 mL) was added 3 drops of pyridinium fluoride ($\mathrm{pH}=5$). The reaction was stirred vigorously for 12 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Concentration of the filtrate followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:1) provided the title compound 38 ($27 \mathrm{mg}, 84 \%$) as a white solid: $\mathrm{mp} 134-136^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.27$ (EtOAc-hexane, $1: 1$); $[\alpha]^{25} \mathrm{D}$ +75.8 ($\mathrm{c}=0.3, \mathrm{CHCl}_{3}$); IR (thin film) 3300, $1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\delta 2.17(3 \mathrm{H}, \mathrm{s}), 2.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}$, dd, J = 1.3, 2.7 Hz), $3.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,3.8 \mathrm{~Hz}), 3.63(1 \mathrm{H}$, dd, $\mathrm{J}=2.7 \mathrm{~Hz}$), $3.97(1 \mathrm{H}$, ddd, $\mathrm{J}=1.3,5.5,6.8 \mathrm{~Hz}), 4.23(1 \mathrm{H}$, $d, J=12.1 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.02$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\right.$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{Na} 343.0784$ $\left(\mathrm{NaM}^{+}\right)$, found $343.0787\left(\mathrm{NaM}^{+}\right)$.
(b) From 43. Following the same procedure as for α-endoperoxide rearrangement of 37, β-endoperoxide 43 (32 mg , 0.1 mmol) gave a quantitative yield of β-bisepoxide 38 as a white solid, after flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $4: 1$).

Silylated α-B isepoxide 39. Following the same procedure as for $5,10,15,20$-tetraphenyl- $21 \mathrm{H}, 23 \mathrm{H}$-porphine cobalt(II) mediated rearrangement of 35 , the α-endoperoxide 36 (11 mg , 0.03 mmol) gave α-bisepoxide 39 ($11 \mathrm{mg}, 100 \%$) as a colorless oil, after fractionation by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:2): $\mathrm{R}_{\mathrm{f}}=0.32$ ($E \mathrm{t}_{2} \mathrm{O}$-hexane, $1: 1$); $[\alpha]^{22} \mathrm{D}-48.1$ ($c=0.8$, CHCl_{3}); IR (thin film) $1726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07$ ($3 \mathrm{H}, \mathrm{s}$), 0.09 ($3 \mathrm{H}, \mathrm{s}$), $0.87(9 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz})$, $3.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,4.0 \mathrm{~Hz}), 4.22$ $(2 \mathrm{H}, \mathrm{m}), 4.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz})$,
$7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.01(2 \mathrm{H}, \mathrm{d}$, J = 7.1 Hz); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{SiNa} 457.1653\left(\mathrm{NaM}^{+}\right)$, found $457.1606\left(\mathrm{NaM}^{+}\right)$.
α-Bisepoxide 40. Following the same procedure as for the α-endoperoxide rearrangement of 37, α-endoperoxide 44 (21 $\mathrm{mg}, 0.07 \mathrm{mmol}$) gave a quantitative yield of α-bisepoxide $\mathbf{4 0}$ as a white solid, after flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 4:1): $\mathrm{mp} 131-133^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (EtOAc-hexane, 4:1); $[\alpha]^{22} \mathrm{D}$ -47.7 ($\mathrm{c}=0.9, \mathrm{CHCl}_{3}$); IR (thin film) 3430, $1722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.08(3 \mathrm{H}, \mathrm{s}), 2.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8$, $4.9 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,3.7 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8$ $\mathrm{Hz}), 4.11(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.7,11.0 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz})$, $4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.4 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ;$ HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{Na} 343.0784\left(\mathrm{NaM}^{+}\right)$, found 343.0797 $\left(\mathrm{NaM}^{+}\right)$.
(3R ,4R)-4-0-Acetyl-5-(benzoyloxymethyl)cyclohexa-1,5-diene-3,4-diol (41). A solution of diene $\mathbf{1 2}$ ($100 \mathrm{mg}, 0.25$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL}$) was added a drop of 48% aqueous HF. The solution was stirred vigorously at room temperature for 6 h and poured into a pad of silica gel. Removal of the solvents under reduced pressure followed by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $2: 1$) afforded the al cohol 41 ($64 \mathrm{mg}, 80 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.31$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $2: 1$); $[\alpha]^{24} \mathrm{D}-150$ (c = 0.3, CHCl_{3}); $\left\{\mathrm{lit} .^{2}[\alpha]^{24} \mathrm{D}-150\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)\right\}$; IR (thin film) $3417,1728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.06(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.48(1 \mathrm{H}, \mathrm{m}), 4.90(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4,17.4, \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=7.1 \mathrm{~Hz}), 6.03(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.7,9.5,12.5 \mathrm{~Hz}), 6.22(1 \mathrm{H}$, $\mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.04(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$).
β-E ndoperoxide 43 and α-E ndoperoxide 44. Following the same procedure as for the endoperoxidation of 12, diene 41 ($8.2 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave a mixture of β - and α-endoperoxides as colorless oils, after fractionation by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 1$): The less polar β-endoperoxide 43 was obtained ($4.0 \mathrm{mg}, 48 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.40$ (EtOAc-hexane, 1:1); ${ }^{1} \mathrm{H}$ NMR $\delta 2.21(3 \mathrm{H}, \mathrm{s}), 3.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.4 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{s}), 4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=12.2 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz})$, $6.77(2 \mathrm{H}, \mathrm{m}), 7.47(2 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 8.03(2 \mathrm{H}$,
$\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}$). The more polar α-endoperoxide 44 was obtained ($2.6 \mathrm{mg}, 32 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33$ ($\mathrm{EtOAc}-$ hexane, 1:1); ${ }^{1} \mathrm{H}$ NMR $\delta 2.06(3 \mathrm{H}, \mathrm{s}), 3.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.60(1 \mathrm{H}$, br s), $4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}), 4.81$ $(2 \mathrm{H}, \mathrm{m}), 6.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,8.3$ $\mathrm{Hz}), 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.04$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}$).

Cyclohexene Epoxide 45. A solution of the α-endoperoxide 43 ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) in benzene (10 mL) was added 5 drops of trimethyl phosphite. The reaction was reflux for 12 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with brine (10 mL), dried (MgSO_{4}), and filtered. Concentration of the filtrate followed by flash chromatography (EtOAc-hexane, 1:2) provided the oxirane 45 ($26 \mathrm{mg}, 85 \%$) as a white solid: $\mathrm{mp} 88-$ $89{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.34$ (EtOAc-hexane, $1: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}+57.7$ ($\mathrm{c}=0.4$, CHCl_{3}); IR (thin film) 3441, $1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.22$ (3H, s), $3.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 5.97(2 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=6.4 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} 305.1025\left(\mathrm{MH}^{+}\right)$, found 305.1027 $\left(\mathrm{MH}^{+}\right)$.
Cyclohexene Epoxide 46. Following the same procedure as for reductive rearrangement of 45, α-endoperoxide 44 (32 $\mathrm{mg}, 0.1 \mathrm{mmol}$) gave 84% of 46 as a colorless oil, after fractionation by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 2:1): R_{f} $=0.40(E t O A c-h e x a n e, 1: 1) ;[\alpha]^{20} \mathrm{D}-104.4\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3520, $1738 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.06(3 \mathrm{H}, \mathrm{s}), 2.18$ $(1 \mathrm{H}, \mathrm{s}$ br), $3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8,6.0$ $\mathrm{Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 5.62$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 6.32(2 \mathrm{H}, \mathrm{m}), 7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz})$, $7.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} 305.1025\left(\mathrm{MH}^{+}\right)$, found $305.1033\left(\mathrm{MH}^{+}\right)$.

Acknowledgment. This research was supported by the Croucher Foundation.
J 09709070

[^0]: * To whom correspondence should be addressed. Fax: (852)-2603 5057. E-mail: tonyshing@cuhk.edu.hk.
 (1) (-)-Quinic Acid in Organic Synthesis. 8. Part 7: (a) Shing, T. K. M.; Wan, L. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1643. (b) J . Org. Chem. 1996, 61, 8468. Part 6: (c) Shing, T. K. M.; Tai, V. W.-F. J. Org. Chem. 1995, 60, 5332.
 (2) Thebtaranonth, C.; Thebtaranonth, Y. Acc. Chem. Res. 1986, 19, 84.
 (3) Balci, M.; Sütbeyaz, Y.; Secen, H. Tetrahedron 1990, 46, 3715.
 (4) Kupchan, S. M.; Hemingway, R. J.; Coggon, P.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1968, 90, 2982.
 (5) Tuntiwachwuttikul, P.; Pancharoen, O.; Bubb, W. A.; Hambley, T. W.; Taylor, W. C.; Reutrakul, V. Aust. J. Chem. 1987, 40, 2049.
 (6) Takahashi, S. Phytochemistry 1969, 8, 321.
 (7) K upchan, S. M.; Hemingway, R. J.; Smith, R. M. J . Org. Chem. 1969, 34, 3898.
 (8) Singh, J.; Dhar, K. L.; Atal, C. K. Tetrahedron 1970, 26, 4403.
 (9) Hollands, R.; Becher, D.; Gaudemer, A.; Polonsky, J. Tetrahedron 1968, 24, 1633.
 (10) Coggon, P.; McPhail, A. T.; Sim, G. A. J. Chem. Soc. B 1969, 534.
 (11) Holbert, G. W.; Ganem, B.; Van Engen, D.; Clardy, J .; Borsub, L.; Chantrapromma, K.; Sadavongvivad, C.; Thebtaranonth, Y. Tetrahedron Lett. 1979, 20, 715.
 (12) Ducruix, A.; Pascard, C.; Polonsky, J. Acta Crystallogr. Sect. B 1976, 32, 1589.

[^1]: (13) K odpinid, M.; Sadavongvivad, C.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1983, 24, 2019.
 (14) (a) Tatsuta, K.; Niwata, K.; Umezawa, K.; Toshima, K.; Nakata, M. J . Antibiot. 1991, 44, 912. (b) Atsumi, S.; Nosaka, C.; Ochi, Y.; Iinuma, H.; Umezawa, K. Cancer Res. 1993, 53, 4896.
 (15) Atsumi, S.; Umezawa, K.; Iinuma, H.; Naganawa, H.; Nakamura, H.; Iitaka, Y.; Takeucki, T. J. Antibiot. 1990, 43, 49.
 (16) Oda, K.; I chihara, A.; Sakamura, S. Tetrahedron Lett. 1975, 16, 3187.
 (17) Demuth, M. R.; Garrett, P. E.; White, J . D. J. Am. Chem. Soc. 1976, 98, 634.
 (18) Matsumoto, M.; Dobashi, S.; Kuroda, K. Tetrahedron Lett. 1977, 18, 3361.

[^2]: (19) (a) Ichihara, A.; Oda, K.; K obayashi, M.; Sakamura, S. Tetrahedron Lett. 1974, 15, 4235. (b) Ichihara, A.; Oda, K.; K obayashi, M.; Sakamura, S. Tetrahedron 1980, 36, 183.
 (20) (a) Hol bert, G. W.; Ganem, B. J. Am. Chem. Soc. 1978, 100, 352. (b) Ganem, B.; Holbert, G. W.; Weiss, L. B.; Ishizumi, K. J. Am. Chem. Soc. 1978, 100, 6483.
 (21) Schlessinger, R. H.; Lopes, A. J. Org. Chem. 1981, 46, 5252.
 (22) Ogawa, S.; Takagaki, T. Bull. Chem. Soc. J pn. 1987, 60, 800.
 (23) Ogawa, S.; Takagaki, T. J . Org. Chem. 1985, 50, 2356.
 (24) (a) Suami, T.; Ogawa, S.; Nakamoto, K.; Kasahara, I. Carbohydr. Res. 1977, 58, 240. (b) Ogawa, S.; I wasawa, Y.; Suami, T. Chem. Lett. 1984, 355. (c) Ogawa, S.; I wasawa, Y.; N oso, T.; Suami, T.; Ohbo, S.; Ito, M.; Saito, Y. J. Chem Soc., Perkin Trans. 1 1985, 903.
 (25) Shing, T. K. M.; Tai, V. W.-F . J. Chem. Soc., Chem. Commun. 1993, 995. (b) J. Chem. Soc., Perkin Trans. 1 1994, 2017.
 (26) Shing, T. K. M.; Tam, E. K. W. Tetrahedron: Asymmetry 1996, 7, 353.

[^3]: (27) Kishi, Y.; Aratani, M.; Tanino, H.; Fukuyama, T.; Goto, T. J . Chem. Soc., Chem. Commun. 1972, 64.
 (28) For an excellent review on the use of singlet oxygen in organic synthesis, see: Wasserman, H. H.; Ives, J . L. Tetrahedron 1981, 37, 1825.
 (29) F or an excellent review on this subject, see: (a) Adam, W.; Balcì, M. Tetrahedron 1980, 36, 833. (b) Balcì, M. Chem. Rev. 1981, 81, 91.
 (30) Boyd, J. D.; F oote, C. S.; Imagawa, D. K. J. Am. Chem. Soc. 1980, 102, 3641.
 (31) (a) Bartlett, P. D.; Baumstark, A. L.; Landis, M. E. J . Am. Chem. Soc. 1973, 95, 6486. (b) Bartlett, P. D.; Landis, M. E.; Baumstark, A. L.; Lerman, C. L. J. Am. Chem. Soc. 1974, 96, 5267. (c) Bartlett, P. D.; Landis, M. E.; Shapiro, M. J. J. Org Chem. 1977, 42, 1661. (d) Baumstark, A. L.; Wilson, T.; Landis, M. E.; Bartlett, P. D. Tetrahedron Lett. 1976, 17, 2397.

[^4]: (32) (a) Shing, T. K. M.; Tang, Y. J . Chem. Soc., Chem. Commun. 1990, 312. (b) Tetrahedron 1990, 46, 6575.
 (33) (a) Shing, T. K. M.; Tang, Y. J. Chem. Soc., Chem. Commun. 1990, 748. (b) Tetrahedron 1991, 47, 4571. (c) Shing, T. K. M.; Cui, Y.-X.; Tang, Y. J. Chem. Soc., Chem. Commun. 1991, 756; (d) Tetrahedron 1992, 48, 2349.
 (34) (a) H older, N . L.; Fraser-Reid, B. Synthesis 1972, 83. (b) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351.

[^5]: (35) I shihara, K.; K urihara, H., Yamamoto, H. J. Org. Chem. 1993, 58, 3791.
 (36) (a) Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem., Int. Ed. Engl. 1994, 33, 2312. (b) Shing, T. K. M.; Tam, E.K. W.; Tai, V. W.-F.; Chung, I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 142.
 (37) Kim, B. M.; Sharpless, K. B. Tetrahedron Lett. 1989, 30, 655.
 (38) Engel, P. S.; Keys, D. E.; Kitamura, A. J. Am. Chem. Soc. 1985, 107, 4964.
 (39) Martin, J. C.; Arhart, R. J . J . Am. Chem. Soc. 1971, 93, 4327.
 (40) Schwartz, A.; Madan, P. J. Org. Chem. 1986, 51, 5463.
 (41) Corey, E.J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677.
 (42) Sütbeyaz, Y.; Secen, H.; Balci, M. J. Chem. Soc., Chem. Commun. 1988, 1330.

[^6]: (43) (a) Merkel, P. B.; Kearns, D. R. J. Am. Chem. Soc. 1972, 94 , 1029. (b) Merkel, P. B.; Kearns, D. R. J. Am. Chem. Soc. 1972, 94 7244.
 (44) Boyd, J. D.; F oote, C. S.; Imagawa, D. K. J. Am. Chem. Soc 1980, 102, 3641
 (45) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. R.; Petasis, N. A. J. Org. Chem. 1979, 44, 4011.

